Плотность тока проводимости, смещения, насыщения: определение и формулы

В данной статье мы рассмотрим плотность тока и формулы для нахождения различных видов плотности тока: проводимости, смещения, насыщения.

Плотность тока – это векторная физическая величина, характеризующая насколько плотно друг к другу располагаются электрические заряды.

Плотность тока проводимости

Ток проводимости – это упорядоченное движение электрических зарядов, то есть обыкновенный электрический ток, который возникает в проводнике. В большинстве случаев, когда речь заходит о токе, имеют ввиду именно ток проводимости.

В данном случае плотность тока – это векторная характеристика тока равная отношению силы тока I в проводнике к площади S поперечного сечения проводника (перпендикулярному по отношению к направлению тока). Эта величина показывает насколько плотно заряды располагаются на всей площади поперечного сечения проводника. Она обозначается латинской буквой j. Модуль плотности электрического тока пропорционален электрическому заряду, который протекает за определенное время через определенную площадь сечения, расположенную перпендикулярно по отношению к его направлению.

Если рассмотреть идеализированной проводник, в котором электрический ток равномерно распределен по всему сечению проводника, то модуль плотности тока проводимости можно вычислить по следующей формуле:

Плотность тока проводимости через силу тока

j – Плотность тока [A/м2]

I – Сила тока [A]

S – Площадь поперечного сечения проводника [м2]

Течение тока, через проводник схематично

Исходя из этого мы можем представить силу тока I как поток вектора плотности тока j, проходящий через поперечное сечение проводникаS. То есть для вычисления силы тока, текущей через определенное поперечное сечение нужно проинтегрировать (сложить) произведения плотности тока в каждой точке проводника jn на площадь поверхности этой точки dS:

Сила тока

I – сила тока [А]

jn - составляющая вектора плотности тока в направлении течения тока (по оси OX) [A/м2]

dS - элемент поверхности площади [м2]

Исходя из предположения, что все заряженные частицы двигаются с одинаковым вектором скорости v, имеют одинаковые по величине заряды e и их концентрация n в каждой точке одинаковая, получаем, что плотность тока проводимости j равна:

Плотность тока проводимости через заряд частиц

j – плотность тока [А/м2]

n – концентрация зарядов [м-3]

e – величина заряда [Кл]

v – скорость, с которой движутся частицы [м/с]

Плотность тока смещения

В классической электродинамике существует понятие тока смещения, который пропорционально равен быстроте изменения индукции электрического поля. Он не связан с перемещением каких-либо частиц поэтому, по сути, не является электрическим током. Несмотря на то, что природа этих токов разная, единица измерения плотности у них одинаковая - A/м2.

Ток смещения – это поток вектора быстроты изменения электрического поля ∂E/∂t через S - некоторую поверхность. Формула тока смещения выглядит так:

Ток смещения

JD - ток смещения [А]

ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)

∂E/∂t - скорость изменения электрического поля [Н/(Кл·с)]

ds – площадь поверхности [м2]

Плотность тока смещения определяется по следующей формуле:


для вакуума:

Плотность тока смещения для вакуума

для диэлектрика:

Плотность тока смещения для диэлектрика

jD - ток смещения [А/м2]

ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/(H·м2)

∂E/∂t - скорость изменения электрического поля [Н/(Кл·с)]

∂D/∂t - скорость изменения вектора эл. индукции [Кл/м2·с)]

Плотность тока насыщения

В физической электронике используют понятие плотности тока насыщения. Эта величина характеризует эмиссионную способность металла, из которого сделан катод, и зависит от его вида и температуры.

Плотность тока насыщения выражается формулой, которая была выведена на основе квантовой статистики Ричардсоном и Дешманом:

Плотность тока смещения для диэлектрика

j – плотность тока насыщения[А/м2]

R - среднее значение коэффициента отражения электронов от потенциального барьера

A - термоэлектрическая постоянная со значением 120,4 А/(K2·см2)

T- температура [К]

- значение работы выхода из катода электронов [эВ], q – электронный заряд [Кл]

k - постоянная Больцмана, которая равна 1,38·10-23 Дж/К

Понравилась статья, расскажите о ней друзьям: